Применение свойств корней п-й степени для преобразования выражений

1. Вынесем множитель за знак корня:

$$\sqrt[n]{a^n \cdot b} = a \cdot \sqrt[n]{b}$$
, n - четное, $a \ge 0$, $b \ge 0$, например, $\sqrt{300} = \sqrt{100 \cdot 3} = 10\sqrt{3}$. Если $a < 0$, $b > 0$, n - четное, то $\sqrt[n]{a^n \cdot b} = |a| \sqrt[n]{b} = -a \sqrt[n]{b}$, например, $\sqrt[4]{(-5)^4 \cdot 7} = 5 \sqrt[4]{7}$.

2. Внесем множитель под знак корня:

Например, $2\sqrt[3]{3} = \sqrt[3]{24}$.

Если
$$a>0,\,b>0,\,n$$
 - четное, то , например, $a\sqrt[8]{b}=\sqrt[8]{a}\cdot\sqrt[8]{b}=\sqrt[8]{a^8\cdot b}$. Если $a<0$, то $a\sqrt[8]{b}=-\sqrt[8]{(-a)^8}\cdot\sqrt[8]{b}=-\sqrt[8]{a^8\cdot b}$.

3. Следующая формула удобна, когда нужно избавиться от иррациональности в знаменателе.

$$\sqrt[n]{\frac{a}{b}} = \sqrt[n]{\frac{ab^{n-1}}{b^n}} = \frac{\sqrt[n]{ab^{n-1}}}{b}.$$

Например,
$$\sqrt[3]{\frac{2}{3}} = \sqrt[3]{\frac{2 \cdot 3^2}{3^3}} = \frac{\sqrt[3]{18}}{3}$$
.

4. Чтобы возвести корень в степень, достаточно возвести в эту степень подкоренное выражение, не меняя показателя корня, то есть

$$\left(\sqrt[n]{a^p}\right)^m = \sqrt[n]{a^{mp}}.$$

Например, $(\sqrt[3]{5})^2 = \sqrt[3]{5^2} = \sqrt[3]{25}$.

Закрепляем:

Пример 1

- а) Вынести множитель из-под знака корня $\sqrt[4]{16x^4y}$ при условии, что x<0.
- б) Внести множитель под знак корня $3y\sqrt[4]{x}$, зная, что у< 0.

Решение.

- а) Так как x<0 по условию, а y≥ 0 (в противном случае выражение не имеет смысла), то $\sqrt[4]{16x^4y} = \sqrt[4]{2^4 \cdot x^4 \cdot y} = \sqrt[4]{2^4 \cdot \sqrt[4]{x^4}} \cdot \sqrt[4]{y} = = 2|x|\sqrt[4]{y} = -2x\sqrt[4]{y}.$
- б) Так как y< 0 по условию, а $x \ge 0$ (в противном случае не имеет смысла выражение $\sqrt[4]{x}$), то $3y\sqrt[4]{x} = -(-y)\cdot\sqrt[4]{3^4}\cdot\sqrt[4]{x} = -\sqrt[4]{(-y)^4}\cdot\sqrt[4]{3^4}\cdot x = -\sqrt[4]{(-y)^4}\cdot 81x = -\sqrt[4]{81xy^4}$.

Пример 2

Выполнить действия: $(3\sqrt{5}-2)(2\sqrt{5}+1)$.

<u>Решение.</u> $(3\sqrt{5}-2)(2\sqrt{5}+1)=6\sqrt{25}+3\sqrt{5}-4\sqrt{5}-2=30-\sqrt{5}-2=28-\sqrt{5}.$

Пример 3

Освободиться от иррациональности в знаменателе:

$$\frac{2+\sqrt{p}}{2-\sqrt{p}}, p>0.$$

Решение.
$$\frac{2+\sqrt{p}}{2-\sqrt{p}} = \frac{\left(2+\sqrt{p}\right)\!\!\left(2+\sqrt{p}\right)}{\left(2-\sqrt{p}\right)\!\!\left(2+\sqrt{p}\right)} = \frac{\left(2+\sqrt{p}\right)^2}{4-p}$$
.

Пример 4

а) Упростите выражение $(\sqrt{x} - \sqrt{y})(\sqrt[6]{x} + \sqrt[6]{y})(\sqrt[3]{x} - \sqrt[6]{xy} + \sqrt[3]{y})$ <u>Решение.</u> $(\sqrt{x} - \sqrt{y})(\sqrt[6]{x} + \sqrt[6]{y})(\sqrt[3]{x} - \sqrt[6]{xy} + \sqrt[3]{y}) = (\sqrt{x} - \sqrt{y})(\sqrt[6]{x} + \sqrt[6]{y})(\sqrt[6]{x^2} - \sqrt[6]{xy} + \sqrt[6]{y^2}) = (\sqrt{x} - \sqrt{y})(\sqrt[6]{x})^3 + (\sqrt[6]{y})^3 = (\sqrt{x} - \sqrt{y})(\sqrt{x} + \sqrt{y}) = x - y$.

б) Упростите выражение: $\sqrt{21-12\sqrt{3}} = \sqrt{12-12\sqrt{3}+9} = \sqrt{\left(2\sqrt{3}-3\right)^2} = \left|2\sqrt{3}-3\right| = 2\sqrt{3}-3.$

Решаем самостоятельно:

Задание 1. При каких значениях переменной a выражение имеет смысл?

 \sqrt{a} ; $\sqrt{a^2}$; $\sqrt{-a}$; $\sqrt{a^3}$; $\sqrt{-a^2}$; $\sqrt[3]{a}$; $\sqrt[4]{a}$; $\sqrt{-a^5}$; $\sqrt[5]{a^2}$; $\sqrt[6]{a^3}$. Залание 2. Вычислите:

Задание 3. Упростите для отрицательного a выражение $\sqrt[3]{-64\sqrt{a^{18}}}$.

Задание 4. Упростите выражение: $\frac{4 \cdot \sqrt[6]{4\sqrt{2}}}{\sqrt[4]{8 \cdot \sqrt[3]{4}}}$.

Задание 5. Упростите выражение: $\sqrt[4]{256a^4b^8c^{12}}$, если a < 0, c > 0. **Задание 6.** Найдите значение выражения $\sqrt[6]{(x-8,5)^6} + \sqrt[4]{(x-12,5)^4}$, если $9,2 \le x \le 12,2$.