Тема: Натуральные числа

1. Определение натурального числа

Натуральные числа — это числа, которые мы используем для подсчета чего-то конкретного, осязаемого.

Вот какие числа называют натуральными: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 и т. д.

Натуральный ряд — последовательность всех натуральных чисел, расположенных в порядке возрастания. Первые сто можно посмотреть в таблице.

Особенности натуральных чисел

Наименьшее натуральное число: единица (1).

Наибольшее натуральное число: не существует. Натуральный ряд бесконечен.

У натурального ряда каждое следующее число больше предыдущего на единицу: 1, 2, 3, 4, 5, 6, 7 и т. д.

Множество всех натуральных чисел принято обозначать латинской буквой N.

Какие операции возможны над натуральными числами

сложение: слагаемое + слагаемое = сумма;

умножение: множитель × множитель = произведение;

вычитание: уменьшаемое – вычитаемое = разность.

При этом уменьшаемое должно быть больше вычитаемого, иначе в результате получится отрицательное число или ноль;

деление: делимое: делитель = частное;

деление с остатком: делимое / делитель = частное (остаток);

возведение в степень: аb, где а — основание степени, b — показатель степени.

2. Десятичная запись натурального числа

Мы регулярно используем цифры: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. При записи любого натурального числа можно использовать только эти цифры без каких-либо других символов. Записываем цифры одну за другой в строчку слева направо, используем одну высоту.

Примеры правильной записи натуральных чисел: 208, 567, 24, 1 467, 899 112. Эти примеры показывают нам, что последовательность цифр может быть разной и некоторые даже могут повторяться.

077, 0, 004, 0931 — это примеры неправильной записи натуральных чисел, потому что ноль расположен слева. Число не может начинаться с нуля. Это и есть десятичная запись натурального числа.

3. Однозначные, двузначные и трехзначные натуральные числа

Однозначное натуральное число — это такое число, в составе которого один знак, одна цифра. Девять однозначных натуральных чисел: 1, 2, 3, 4, 5, 6, 7, 8, 9.

Двузначные натуральные числа — те, в составе которых два знака, две цифры. Цифры могут повторяться или быть различными. Например: 88, 53, 70.

Если множество предметов состоит из девяти и еще одного, значит, речь идет об 1 десятке («один десяток») предметов. Если один десяток и еще один, значит, перед нами 2 десятка («два десятка») и так далее.

По сути, двузначное число — это набор однозначных чисел, где одно записывается справа, а другое слева. Число слева показывает количество десятков в составе натурального числа, а число справа — количество единиц. Всего двузначных натуральных чисел — 90.

Трехзначные натуральные числа — числа, в составе которых три знака, три цифры. Например: 666, 389, 702.

Одна сотня — это множество, состоящее из десяти десятков. Сотня и еще одна сотня — 2 сотни. Прибавим еще одну сотню — 3 сотни.

Вот как происходит запись трехзначного числа: натуральные числа записываются одно за другим слева направо.

Крайнее правое однозначное число указывает на количество единиц, следующее — на количество десятков, крайнее левое — на количество сотен. Цифра 0 показывает отсутствие единиц или десятков. Поэтому 506 — это 5 сотен, 0 десятков и 6 единиц.

Точно так же определяются четырехзначные, пятизначные, шестизначные и другие натуральные числа.

4. Многозначные натуральные числа

Многозначные натуральные числа состоят из двух и более знаков.

1 000 — это множество с десятью сотнями, 1 000 000 состоит из тысячи тысяч, а один миллиард — это тысяча миллионов. Тысяча миллионов, только представьте! То есть мы можем рассмотреть любое многозначное натуральное число как набор однозначных натуральных чисел.

Например, 2 873 206 содержит в себе: 6 единиц, 0 десятков, 2 сотни, 3 тысячи, 7 десятков тысяч, 8 сотен тысяч и 2 миллиона.

Сколько всего натуральных чисел?

Однозначных 9, двузначных 90, трехзначных 900 и т.д.

5. Свойства натуральных чисел

Об особенностях натуральных чисел мы уже знаем. А теперь подробно расскажем про их свойства:

множество натуральных чисел	бесконечно и начинается с единицы (1)
за каждым натуральным числом следует другое	оно больше предыдущего на 1
результат деления натурального числа	само натуральное число: 5 : 1 = 5
на единицу (1)	
результат деления натурального числа самого на	единица (1): 6 : 6 = 1
себя	
переместительный закон сложения	от перестановки мест слагаемых сумма не меняется: $4+3=3+4$
сочетательный закон сложения	результат сложения нескольких слагаемых не зависит от порядка действий: $(2+3)+4=2+(3+4)$
переместительный закон умножения	от перестановки мест множителей произведение не изменится: $4 \times 5 = 5 \times 4$
сочетательный закон умножения	результат произведения множителей не зависит от порядка действий; можно хоть так, хоть эдак: (6 \times 7) \times 8 = 6 \times (7 \times 8)
распределительный закон умножения	чтобы умножить сумму на число, нужно каждое
относительно сложения	слагаемое умножить на это число и полученные
	результаты сложить: $4 \times (5+6) = 4 \times 5 + 4 \times 6$

распределительный закон умножения	чтобы умножить разность на число, можно						
относительно вычитания	умножить на это число отдельно уменьшаемое						
	и вычитаемое, а затем из первого произведения						
	вычесть второе: $3 \times (4 - 5) = 3 \times 4 - 3 \times 5$						
распределительный закон деления относительно	чтобы разделить сумму на число, можно разделить						
сложения	на это число каждое слагаемое и сложить						
	полученные результаты: $(9+8): 3=9: 3+8: 3$						
распределительный закон деления относительно	чтобы разделить разность на число, можно						
вычитания	разделить на это число сначала уменьшаемое,						
	а затем вычитаемое, и из первого произведения						
	вычесть второе: $(5-3): 2=5: 2-3: 2$						

6. Разряды натурального числа и значение разряда

Напомним, что от позиции, на которой стоит цифра в записи числа, зависит ее значение. Так, например, 1 123 содержит в себе: 3 единицы, 2 десятка, 1 сотню, 1 тысячу. При этом можно сформулировать иначе и сказать, что в заданном числе 1 123 цифра 3 располагается в разряде единиц, 2 в разряде десятков, 1 в разряде сотен и 1 служит значением разряда тысяч.

Разряд — это позиция, место расположения цифры в записи натурального числа.

У каждого разряда есть свое название. Слева всегда располагаются старшие разряды, а справа — младшие. Чтобы быстрее запомнить, можно использовать таблицу.

Разряды														
сотен триллионов	десятков триллионов	триллионов	сотен миллиардов	десятков миллиардов	миллиардов	сотен миллионов	десятков миллионов	МИЛЛИОНОВ	сотен тысяч	десятков тысяч	Тычяч	сотен	десятков	единиц

Количество разрядов всегда соответствует количеству знаков в числе. В этой таблице есть названия всех разрядов для числа, которое состоит из 15 знаков. У следующих разрядов также есть названия, но они используются крайне редко.

Низший (младший) разряд многозначного натурального числа — разряд единиц.

Высший (старший) разряд многозначного натурального числа — разряд, соответствующий крайней левой цифре в заданном числе.

Вы наверняка заметили, что в учебниках часто ставят небольшие пробелы при записи многозначных чисел. Так делают, чтобы натуральные числа было удобно читать. А еще — чтобы визуально разделить разные классы чисел.

Класс — это группа разрядов, которая содержит в себе три разряда: единицы, десятки и сотни.

7. Действия с натуральными числами

Сложение

Сложение – это арифметическая операция, в результате которой объединяются единицы двух чисел.

Например, 2 + 3 = 5.

2 состоит из двух единиц, 3 состоит из трех единиц, тогда (1+1)+(1+1+1)=5.

Допустим, вместо наших единиц будут апельсины. У Саши будет 4 апельсина, а у Маши 3 апельсина. Если девочки сложат апельсины в один пакет, то получится 7 апельсинов. Это действие можно записать через сложение как 4+3=7.

Сложение можно записать как m + n = p, где m и n — слагаемые, p — сумма.

Вычитание

Вычитание – это арифметическое действие, обратное сложению.

Если при сложении мы ищем сумму через слагаемые, то в вычитании можем найти слагаемое через сумму и другое слагаемое. Например, 6 - 2 = 4.

Вычитание можно записать как p - n = m, p - yменьшаемое, n - вычитаемое, m - pазность.

Умножение

Умножение – это действие, в результате которого определенное слагаемое берется несколько раз.

Например, в записи 35 * 3, число 35 берется три раза: 35 + 35 + 35.

Умножение можно записать как m * n = p, где m и n — множители, p — произведение.

Деление

Деление – это действие, обратное умножению.

Например, 35:5=7.

Деление можно записать как m : n = p, где m — делимое, n — делитель, p — частное.

Следует запомнить, что делить на 0 натуральные числа нельзя.

Однако не всегда получается разделить число нацело, тогда при делении появляется **остаток**. Например, при делении 36 на 8 получается частное 4 и остаток 4. Иначе эту операцию можно записать так: 36 = 8 * 4 + 4.

Деление с остатком

Деление с остатком можно записать как m = n * p + r, где m — делимое, n — делитель, p — частное и r — остаток.

Задание для самопроверки

Задание 1 Определить, какое число стоит перед:

- 1.65;
- 2. 756:
- 3.3 857;
- 4. 45 940.

Определить, какое число на две единицы больше, чем:

- 1.404;
- 2. 543;
- 3. 6 348;
- 4. 2 450.

Задание 2

Написать в виде словосочетаний следующие цифры:

- 1.547;
- 2. 3 417;
- 3.814261;
- 4.57309.

Задание 3

Представить в виде чисел словосочетания:

- 1. триста шесть десят девять;
- 2.одна тысяча двести девяносто три;
- 3. десять тысяч шестьсот восемьдесят восемь;
- 4. семьдесят пять тысяч пятнадцать;
- 5. двести пятнадцать тысяч семьсот двадцать четыре.

Задание 4

- 1. Выполните сложение.
- a) 348 588 667 + 239 586 394 =
- б) 93 955 483 + 495 868 991 =
- B) 23 394 596 + 5 697 345 =
- Γ) 3 949 532 + 405 669 =
- 2. Выполните вычитание.
- a) 348 588 667 283 745 733 =
- 6) 93 955 483 22 394 583 =
- в) 23 394 596 192 485 =
- Γ) 3 949 532 4 348 483 =

Задание 5

- 1. Выполните умножение.
- a) 283 * 46 =

2. Умножьте числа, используя наиболее удобный порядок действий.

Задание 6

Для того чтобы повторить сложение, вычитание чисел, а также порядок действий при вычислении сложного выражения, можно решить несколько выражений: